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Abstract 
The role of transient event-related potentials (ERP) and neural oscillations in cognitive 

processes such as vision and attention have long been studied; however, recent human 

intracranial EEG studies have highlighted the presence of dynamic shifts in aperiodic activity in 

response to visual stimulation. Despite burgeoning interest in the functional role of aperiodic 

neural activity, the biophysical mechanisms have not been fully characterized. Non-human 

primate (NHP) models allow us to investigate the cellular underpinnings of LFP activity; however, 

anatomical differences in visual cortices between human and NHP models might cause 

differences in stimulus-evoked visual processing. Here, we apply Spectral Parameterization to 

analyze aperiodic responses to visual stimulation in macaques. We show that the aperiodic 

exponent and offset of the LFP power spectra both increase upon stimulus presentation and show 

a slow decay after onset. These changes manifest as a broadband upward shift and steepening 

of the power spectra. Furthermore, we show that these spectral changes are correlated with local 

multiunit activity (MUA) across time, supporting previous findings linking broadband spectral 

power to local spiking activity. These findings suggest that aperiodic activity is functionally 

relevant for visual encoding and linked to the underlying biophysics, indicating that primates may 

be a good model for studying the cellular mechanisms of visual processing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

Natural scenes in the visual world are composed of complex objects, textures and colors 

that, through higher order visual processes, give rise to our perceived reality 1–4. These visual 

inputs can be quantified through electrophysiological patterns of brain activity which aggregate 

synchronous, rhythmic oscillations with aperiodic activity as a representation of population firing 
5,6. Local field potential (LFP) recordings permit the individual measurement of oscillatory and 

aperiodic activity 7. Importantly, aperiodic activity has been recently linked to the dynamic balance 

between neural excitation and inhibition as well as temporal precision in sensory integration 

processes 8,9. Disruption in this balance has been implicated in neurological disorders such as 

epilepsy, schizophrenia, and autism 10–13.  

 

Recent human intracranial electroencephalography (iEEG) studies have highlighted the 

presence of dynamic shifts in aperiodic activity in response to visual stimulation 14; however, the 

biophysical mechanisms underlying the functional role of this activity have not been fully 

characterized. Non-human primate (NHP) models allow us to investigate the cellular 

underpinnings of these electrophysiological patterns due to shared neurological features not 

found in other animals 15. However, anatomical differences in visual cortices between human and 

NHP models might cause a difference in stimulus-evoked visual processing 16,17. We 

parameterized stimulus-evoked changes in aperiodic electrophysiological activity in the macaque 

visual cortex to establish whether LFPs in the primate visual cortex exhibit event-related changes 

in aperiodic activity, and characterize the biophysical mechanisms of these aperiodic shifts. 

 

We hypothesize that the presentation of visual stimuli will cause event-related changes in 

aperiodic activity. Specifically, due to the potential link between aperiodic activity and the dynamic 

nature of neural firing reflected in LFP activity, we hypothesize that visual stimuli will cause a 

flattening of the LFP power spectrum, signaling excitatory drive. To investigate this hypothesis, 

we leveraged an openly available dataset of LFP recordings collected from two macaques 

implanted with 1024 electrodes across the primary visual cortex (V1) and supplementary visual 

area V4 as they engaged in a visual fixation task (Chen et al., Scientific Data, 2022). We 

performed time-resolved spectral decomposition and parameterization of LFP responses, and 

observed dynamic fluctuations in aperiodic activity in response to visual stimulation. We show 

that the aperiodic exponent and offset of the LFP power spectra both increase upon stimulus 

presentation and show a slow decay after onset. These changes manifest as a broadband upward 

shift and steepening of the power spectra. These effects were widespread across recording 

electrodes in V1 and V4. Furthermore, we show that these spectral changes are correlated with 

local multiunit activity (MUA) across time, however, our results indicate a negative correlation in 

contrast to previous findings linking broadband spectral power to local spiking activity. These 

findings suggest that aperiodic activity is functionally relevant for visual encoding and linked to 

the underlying biophysics. Thus supporting the primate visual cortex as a model for studying the 

cellular mechanisms of stimulus-evoked aperiodic shift, though further investigation is still 

needed. Decoding the biological mechanisms that give rise to visual processing may provide 

insight into how the brain processes information in cognition and disease. 

 



 
Fig. 1| Experimental paradigm. a, Array placement spanning V1 and V4, including channel 

position for all arrays. b, Visual fixation task performed each trial for both monkeys while head-

fixed. The visual stimulus is a static checkerboard pattern filling the entire screen for 400 

milliseconds. 

 
 

 

Methods 
 

Dataset 

Electrophysiological recordings were collected by Chen et al.18. The dataset consists of 

high-resolution, large-spatial V1 and V4 cortical activity in two macaque monkeys. Neuronal 

activity was recorded with a 1024-channel intracranial implant distributed across 16 Utah 

electrode arrays, with 64 electrodes each. Two arrays were implanted on V4 and the remaining 

(n=14) on V1 (Fig. 1a). Data was sampled at a rate of 30 kHz. LFP and MUA recordings were 

obtained from a behavioral task collected across three recording sessions per animal. The 

published report contains the complete details on data collection procedures, experimental 

design, and data preprocessing.  

 

Visual fixation task: Each session consists of at least 30 trials. For each trial, the monkey 

maintained fixation on a grey screen for 400 ms before a checkerboard stimulus appeared for 

another 400 ms (Fig. 1b). Following, the experimenters determined signal-to-noise ratio (SNR) by 

comparing the visually evoked activity on each channel to baseline. This metric was meant to 

serve as an assessment of the quality of the neuronal signal, however, for our analysis we 

included all channels independently of their SNR score. Sessions were then epoched into 

baseline and encoding segments for spectral analysis. 

 

Data preprocessing was done by the experimenters after the recording session. Raw 

neuronal data was temporally aligned to extract LFP and envelope multiunit activity (MUAe). The 

LFP signals were generated with a low-pass Butterworth filter at 150 Hz and down-sampled to 

500 hz. MUAe is defined by the experimenters as the aggregation of spiking activity across 



multiple units recorded via one electrode. To generate the MUAe, the experimenters filtered the 

raw data between 0.5–9 kHz. The filtered signal was rectified which was then followed by a low-

pass Butterworth filter of 200 Hz. The data were down-sampled by a factor of 30 and a final 

bandstop filter was applied at 50 Hz.The LFP signals were generated with a low-pass Butterworth 

filter at 150 Hz and down-sampled to 500 hz. 

 

Spectral Analysis 

Power spectra were calculated using the MNE toolbox v.1.3.119. Each trial consisted of a 

baseline (-0.3–0 seconds) and encoding (0–0.3 seconds), from which the spectral analysis was 

performed. The multitaper method was applied to compute spectral estimates for short-time 

windows balancing the bias-variance tradeoff. For the epoch based analysis, the function 

mne.time_frequency.psd_array_multitaper was applied to calculate the spectral content for each 

electrode in baseline and encoding. For our time-resolved analysis, we implemented the function 

mne.time_frequency.tfr_array_multitaper. The general settings were used for parameterization: 

peak width limits: (2, 12); maximum number of peaks: 5; peak threshold: 2.0; aperiodic mode: 

‘knee.’. 

 

Spectrograms were computed for both baseline and encoding epochs for each trial using 

multitapers. For the time-resolved analysis, the frequency range selected was 4–100 Hz; a 

window of 300 ms; and a bandwidth of 10 Hz. Trials were averaged for each electrode and 

aggregated across arrays. 

 

Parameterization 

For each channel, power spectra were parameterized using the open-source toolbox 

developed by 6, v.1.1.1. This approach models the power spectrum as a combination of oscillatory 

and aperiodic components, allowing further analysis of aperiodic components alone. The power 

spectral density 𝑃(𝑓) at each frequency 𝑓 is the sum of the aperiodic component 𝐿(𝑓) and 

oscillatory components 𝐺𝑛(𝑓): 

 

𝑃(𝑓)  =  𝐿(𝑓)  +  ∑

𝑁

𝑛=0

𝐺𝑛  (𝑓) 

 

The aperiodic component by itself can be modeled as a Lorentzian function with offset 𝑏, spectral 

knee 𝑘, and aperiodic exponent 𝑋: 

 

𝐿(𝑓)  =  𝑏 −  𝑙𝑜𝑔[𝑘 +  𝑓 𝑋], 

 

While the oscillatory components are modelled as Gaussian functions. Since we plotted 

the power spectrum on a log-log axis, the fit will be slightly bent due to the aperiodic mode 

selected (‘knee’), affecting the aperiodic exponent 𝑋 which otherwise in the ‘fixed’ mode would 

solely correspond to the slope of the spectra. This approach assumes that oscillatory and 

aperiodic processes are distinct and separable.  

 



Statistical analysis 

Statistical analyses were carried out using the NumPy and SciPy.stats Python packages. 

We calculated the mean, variance, and standard deviation for our epoch-based analysis. During 

the baseline period, we applied a KS test for normality and a paired t-test for the difference before 

and after stimulus presentation for both the aperiodic offset and exponent. 

A linear regression was used to evaluate whether shifts in aggregated spiking activity, 

denoted by MUAe, were related to shifts in the aperiodic offset and exponent. A scatter plot was 

overlaid to show individual electrode values across-trial average. 

 
 

 

Results 
 

 Our analysis examined whether macaques exhibit stimulus-evoked changes in aperiodic 

activity during visual processing. To quantify these aperiodic features, we analyzed the spectral 

composition of LFP signals before and after visual stimulus presentation. The aperiodic 

component of the power spectrum is modeled using a Lorentzian function, characterized by a 

broadband offset, knee, and aperiodic exponent. Previous studies have linked the aperiodic 

exponent, which reflects the slope of the power spectrum, to the balance between synaptic 

excitation and inhibition. While the broadband offset has been associated with population firing 

rate. Considering these findings, our analysis focused on stimulus-evoked changes in the 

aperiodic exponent and offset. 

 

Functional 

 First, we show voltage changes in the time-series of single trials upon stimulus 

presentation marked at 0 seconds (Fig. 2a). To calculate the power spectrum, we averaged 

across all trials and fitted the Spectral Parameterization model (Fig. 2b). Here, the peaks at 60 

and 120 Hz are line noise, most likely repeating due to harmonics. Offset and exponent values 

were extracted at baseline for every electrode placement in each of the two subjects (Fig. 2c-f). 

The schematics show example values for one monkey while the histograms include both subjects. 

For monkey ‘A’, in the visual task session ‘SNR_140819’, the aperiodic offset displayed a mean 

of 5.742 and variance of 0.427; the KS test results showed a value of 0.082 and p-value of 0.000. 

The mean for the aperiodic exponent in the same subject and session was 2.179 with a variance 

of 0.103; the exponent KS test results were 0.179 with 0.000 in p-value. For the second monkey, 

‘L’, session ‘SNR_250717’, the offset displayed a mean of 6.192 and a variance of 0.374; for this 

variable, there was a value of 0.045 on KS test and 0.032 in p-value. Furthermore, the aperiodic 

exponent for this monkey and session had a mean of 2.091 and 0.068 variance; the KS test had 

a value of 0.038 and p-value of 0.105. 

 

 



 
Fig. 2| Baseline aperiodic activity in macaque visual cortex. a, Time-series representation of 

electrophysiological recordings across single trials for an example channel. b, Trial-averaged 

power spectrum for one subject with aperiodic model fit superimposed. c, d, Schematic of array 

placement displaying baseline aperiodic offset (c) and exponent (d). e, f, Histogram displaying 

baseline aperiodic offset (e) and exponent (f) for all channels. 

 

 

 

 

For each aperiodic component, we compared the baseline (-0.3–0 seconds) values with 

the average across trials during encoding (0–0.3 seconds). We plotted a spectrogram of an 

example session (Fig. 3a) and computed the epoched change in overall power spectra between 

baseline and encoding (Fig. 3b). We have shaded the variance in the spectral difference between 

baseline and encoding, which shows an overall increase in power after the visual stimulus was 

presented (Fig. 3c). Similar to baseline, we extracted the values for aperiodic offset and exponent 

post-stimulus presentation and calculated the difference between pre and post stimulus for every 

electrode placement in each of the two subjects (Fig. 3d-g). The change in offset for monkey ‘A’, 

in session ‘SNR_140819’ had a mean of 0.801 with a variance of 0.228; for this analysis, we 

implemented a paired t-test with results of -53.588 and p-value of 0.000. The same subject 

showed a mean change of exponent of 0.294 and 0.043 variance; the t-test results showed -



45.178 and a p-value of 0.000. The second subject, with the same session used to calculate 

baseline values, had a mean offset difference of 1.163 with a variance of 0.509; t-test of -52.135 

and p-value of 0.000. Finally, the change in exponent for this same subject had a mean of 0.373 

with a variance of 0.118; t-test of -34.696 and p-value of 0.000. 

 

 

 

 
Fig. 3| Aperiodic components display an overall increase upon stimulus presentation. a, 

Trial-averaged spectrogram displaying change in power across time at all frequencies. b, Grand-

averaged power spectra for all channels in baseline and encoding epochs. c, Difference in power 

spectra for all frequencies between encoding and baseline epochs. The shaded region represents 

the standard deviation across channels. d, e, Schematic of array placement displaying the 

difference in aperiodic components between baseline and encoding. f, g,  Histogram displaying 

difference in aperiodic components. 

 

 

 

 

 

 



Physiological 

 Biophysical responses, as shown through aggregated spiking activity in MUAe, were 

computed in epochs to calculate the difference before and after stimulus presentation for each 

electrode (Fig. 4a). We then proceeded to plot the MUAe in a time-resolved manner alongside 

the aperiodic offset and exponent (Fig. 4b). Marking time zero as stimulus presentation, the three 

variables displayed a change in z-score. Finally, we computed a linear regression between the 

aperiodic components and MUAe, showing that they hold an overall negative correlation. Monkey 

‘A’ displayed a slope of -0.624 when compared to the exponent and -1.112 with offset, holding a 

p-value of 0.000 for both. For monkey ‘L’, the slope correlating the exponent and MUA was of -

0.259 and for the offset -0.162, with p-values of 0.000 and 0.009 respectively. 

 

 

 

 

 
Fig. 4| Time-resolved parameterization of spiking activity with LFP exponent and offset. a, 

Schematic of multiunit activity across channels displaying the difference between encoding and 

baseline. b, Time-resolved parameterization between all components display changes upon 

stimulus presentation. c,  Linear regression shows negative correlation between aperiodic 

exponent and multiunit activity for both monkeys. d, Linear regression shows negative correlation 

between aperiodic offset and multiunit activity for both monkeys. 

 

 



 

Discussion 
 

 Physiologically-informed models link aperiodic local field potentials (LFPs) to underlying 

spiking dynamics. Spectral components such as the aperiodic offset and exponent have been 

linked to neural firing rate and population balance of excitation and inhibition, respectively 9,20. 

Non-human primate (NHP) models may prove useful to gain a better understanding of the 

biological basis behind these biophysical mechanisms, however, it is unclear if differences in 

anatomy between humans and NHPs extend to differences in stimulus-evoked visual processing. 

 

In this study, we compared stimulus-evoked changes in LFP and MUA through an epoch-

based and time-resolved analysis. Our main aims were to: 1) establish whether LFPs in the 

primate visual cortex exhibit event-related changes in aperiodic activity, and 2) characterize the 

biophysical mechanisms of these aperiodic shifts. Our results indicate that macaque LFPs in 

primary visual cortex (V1) and supplementary visual area V4 exhibit stimulus-evoked changes in 

aperiodic activity. We show that stimulus encoding is associated with broad increases in the 

aperiodic offset and exponent, although these shifts seem to vary between subjects. This raises 

one notable limitation within our study: we are unable to statistically account for inter-subject 

differences in aperiodic changes due to low subject count (n=2). A possible workaround to this 

problem would be to inspect each subject’s evoked response potentials since variability in subject 

evoked responses to the stimulus might address the differences we observed in the aperiodic 

components. 

 

Future studies could address this limitation by looking at the evoked-response potentials 

(ERPs) from each subject on each session. Since ERPs are voltage changes that directly occur 

due to a sensorial event, discrepancies between these signals in subjects could explain the 

difference in aperiodic component changes we saw in our epoch-based analysis. Another route 

that might be of interest would be to characterize the interaction between aperiodic shifts and 

oscillations, more particularly alpha band changes after a stimulus presentation given their role in 

regulating the timing and temporal resolution of visual perception 21. Finally, one last opportunity 

for future research would be to analyze if these aperiodic components still display some shift when 

the subject is in resting state or when switching states such as in arousal. The current dataset 

contains three resting state sessions for each monkey and pupil diameter data for each session. 

By investigating and understanding how the brain encodes and interprets visual information, we 

can gain valuable insights into cognitive function and how they go awry in neurological disorders. 

This knowledge can inform the design of more precise, personalized healthcare approaches. 
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